Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Kidney Int ; 100(6): 1303-1315, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34352311

RESUMO

Kidney failure is common in patients with Coronavirus Disease-19 (COVID-19), resulting in increased morbidity and mortality. In an international collaboration, 284 kidney biopsies were evaluated to improve understanding of kidney disease in COVID-19. Diagnoses were compared to five years of 63,575 native biopsies prior to the pandemic and 13,955 allograft biopsies to identify diseases that have increased in patients with COVID-19. Genotyping for APOL1 G1 and G2 alleles was performed in 107 African American and Hispanic patients. Immunohistochemistry for SARS-CoV-2 was utilized to assess direct viral infection in 273 cases along with clinical information at the time of biopsy. The leading indication for native biopsy was acute kidney injury (45.4%), followed by proteinuria with or without concurrent acute kidney injury (42.6%). There were more African American patients (44.6%) than patients of other ethnicities. The most common diagnosis in native biopsies was collapsing glomerulopathy (25.8%), which was associated with high-risk APOL1 genotypes in 91.7% of cases. Compared to the five-year biopsy database, the frequency of myoglobin cast nephropathy and proliferative glomerulonephritis with monoclonal IgG deposits was also increased in patients with COVID-19 (3.3% and 1.7%, respectively), while there was a reduced frequency of chronic conditions (including diabetes mellitus, IgA nephropathy, and arterionephrosclerosis) as the primary diagnosis. In transplants, the leading indication was acute kidney injury (86.4%), for which rejection was the predominant diagnosis (61.4%). Direct SARS-CoV-2 viral infection was not identified. Thus, our multi-center large case series identified kidney diseases that disproportionately affect patients with COVID-19 and demonstrated a high frequency of APOL1 high-risk genotypes within this group, with no evidence of direct viral infection within the kidney.


Assuntos
Injúria Renal Aguda , COVID-19 , Apolipoproteína L1/genética , Humanos , Rim , Estudos Retrospectivos , SARS-CoV-2
3.
Science ; 373(6554)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34326208

RESUMO

Emerging studies indicate that the immune system can regulate systemic metabolism. Here, we show that thymic stromal lymphopoietin (TSLP) stimulates T cells to induce selective white adipose loss, which protects against obesity, improves glucose metabolism, and mitigates nonalcoholic steatohepatitis. Unexpectedly, adipose loss was not caused by alterations in food intake, absorption, or energy expenditure. Rather, it was induced by the excessive loss of lipids through the skin as sebum. TSLP and T cells regulated sebum release and sebum-associated antimicrobial peptide expression in the steady state. In human skin, TSLP expression correlated directly with sebum-associated gene expression. Thus, we establish a paradigm in which adipose loss can be achieved by means of sebum hypersecretion and uncover a role for adaptive immunity in skin barrier function through sebum secretion.


Assuntos
Tecido Adiposo Branco/anatomia & histologia , Citocinas/metabolismo , Sebo/metabolismo , Pele/metabolismo , Imunidade Adaptativa , Animais , Citocinas/genética , Dieta , Glucose/metabolismo , Homeostase , Humanos , Imunoglobulinas/metabolismo , Metabolismo dos Lipídeos , Camundongos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/prevenção & controle , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores de Citocinas/metabolismo , Glândulas Sebáceas/metabolismo , Transdução de Sinais , Pele/imunologia , Linfócitos T/fisiologia , Redução de Peso , Linfopoietina do Estroma do Timo
4.
Kidney360 ; 2(11): 1770-1780, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-35372991

RESUMO

Background: Immune responses to vaccination are a known trigger for a new onset of glomerular disease or disease flare in susceptible individuals. Mass immunization against SARS-CoV-2 in the COVID-19 pandemic provides a unique opportunity to study vaccination-associated autoimmune kidney diseases. In the recent literature, there are several patient reports demonstrating a temporal association of SARS-CoV-2 immunization and kidney diseases. Methods: Here, we present a series of 29 cases of biopsy-proven glomerular disease in patients recently vaccinated against SARS-CoV-2 and identified patients who developed a new onset of IgA nephropathy, minimal change disease, membranous nephropathy, ANCA-associated GN, collapsing glomerulopathy, or diffuse lupus nephritis diagnosed on kidney biopsies postimmunization, as well as recurrent ANCA-associated GN. This included 28 cases of de novo GN within native kidney biopsies and one disease flare in an allograft. Results: The patients with collapsing glomerulopathy were of Black descent and had two APOL1 genomic risk alleles. A brief literature review of patient reports and small series is also provided to include all reported cases to date (n=52). The incidence of induction of glomerular disease in response to SARS-CoV-2 immunization is unknown; however, there was no overall increase in incidence of glomerular disease when compared with the 2 years prior to the COVID-19 pandemic diagnosed on kidney biopsies in our practice. Conclusions: Glomerular disease to vaccination is rare, although it should be monitored as a potential adverse event.


Assuntos
COVID-19 , Glomerulonefrite por IGA , Apolipoproteína L1 , Vacinas contra COVID-19/efeitos adversos , Glomerulonefrite por IGA/epidemiologia , Humanos , Pandemias , SARS-CoV-2 , Vacinação/efeitos adversos
5.
JMM Case Rep ; 4(6): e005098, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29026625
7.
PLoS Biol ; 14(8): e1002526, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27500644

RESUMO

It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.


Assuntos
Células Matadoras Naturais/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptores KIR/imunologia , Transdução de Sinais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Citometria de Fluxo , Variação Genética/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subfamília A de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Interferência de RNA , Receptores KIR/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética
8.
Blood ; 121(16): 3135-46, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23407547

RESUMO

Signaling pathways leading to natural killer (NK)-cell effector function are complex and incompletely understood. Here, we investigated the proximal signaling pathways downstream of the immunotyrosine-based activation motif (ITAM) bearing activating receptors. We found that the adaptor molecule SH2 domain-containing leukocyte protein of 76 kD (SLP-76) is recruited to microclusters at the plasma membrane in activated NK cells and that this is required for initiation of downstream signaling and multiple NK-cell effector functions in vitro and in vivo. Surprisingly, we found that 2 types of proximal signaling complexes involving SLP-76 were formed. In addition to the canonical membrane complex formed between SLP-76 and linker for activation of T cells (LAT) family members, a novel LAT family-independent SLP-76-dependent signaling pathway was identified. The LAT family-independent pathway involved the SH2 domain of SLP-76 and adhesion and degranulation-promoting adaptor protein (ADAP). Both the LAT family-dependent and ADAP-dependent pathway contributed to interferon-gamma production and cytotoxicity; however, they were not essential for other SLP-76-dependent events, including phosphorylation of AKT and extracellular signal-related kinase and cellular proliferation. These results demonstrate that NK cells possess an unexpected bifurcation of proximal ITAM-mediated signaling, each involving SLP-76 and contributing to optimal NK-cell function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Sistema y+ de Transporte de Aminoácidos/imunologia , Cadeias Leves da Proteína-1 Reguladora de Fusão/imunologia , Células Matadoras Naturais/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/imunologia , Fosfoproteínas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistema y+L de Transporte de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Interferon gama/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Fosfoproteínas/análise , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais
9.
FEBS Lett ; 584(24): 4901-9, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20965179

RESUMO

Immunoreceptor engagement leads to the activation of multiple second messenger cascades, and integration of these pathways requires proper function of a number of adapter proteins. Although adapters possess no intrinsic enzymatic function, they nucleate the formation of multi-molecular protein complexes to support downstream signaling. Since adapters contain functionally distinct domains, intense investigation has been devoted to understanding how these regions act to integrate signals. This review describes the evolution of studies investigating one of these adapters, the SH2 domain-containing leukocyte protein of 76 kDa. Through utilizing biochemical, genetic and imaging techniques, a model has emerged describing how this adapter regulates signals resulting in complex immune responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Mutação , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem da Célula , Humanos , Modelos Teóricos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...